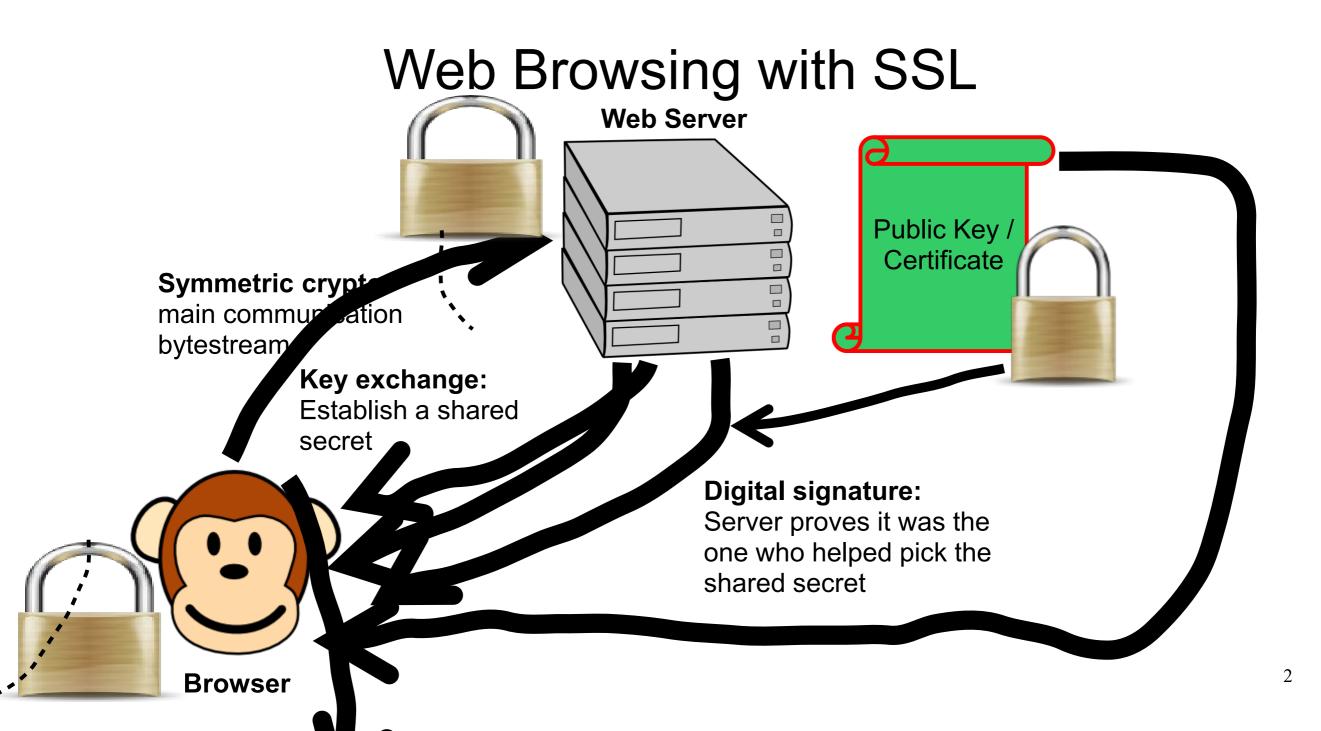
Correct-by-Construction Cryptography Without Performance Compromises

Adam Chlipala, MIT CSAIL NUS Computer Science Research Week January 2022

Joint work with: Joonwon Choi, Andres Erbsen, Jason Gross, Jade Philipoom, Robert Sloan, Clark Wood

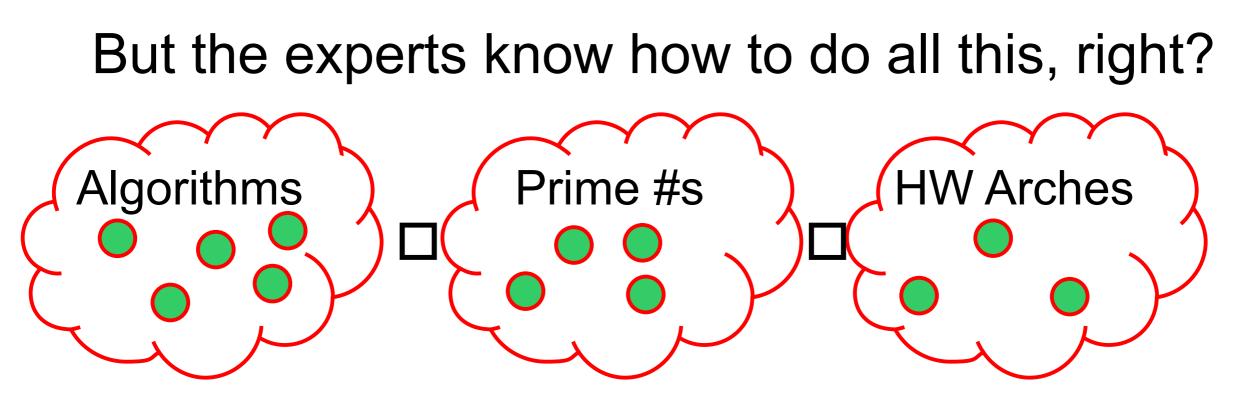


About the First Two Stages (Public-Key Crypto)

 Public-key stages only run once per session, but, with many small HTTPS connections common in practice, their performance is still important.

 Balancing correctness and performance is also more challenging for the public-key algorithms.

3



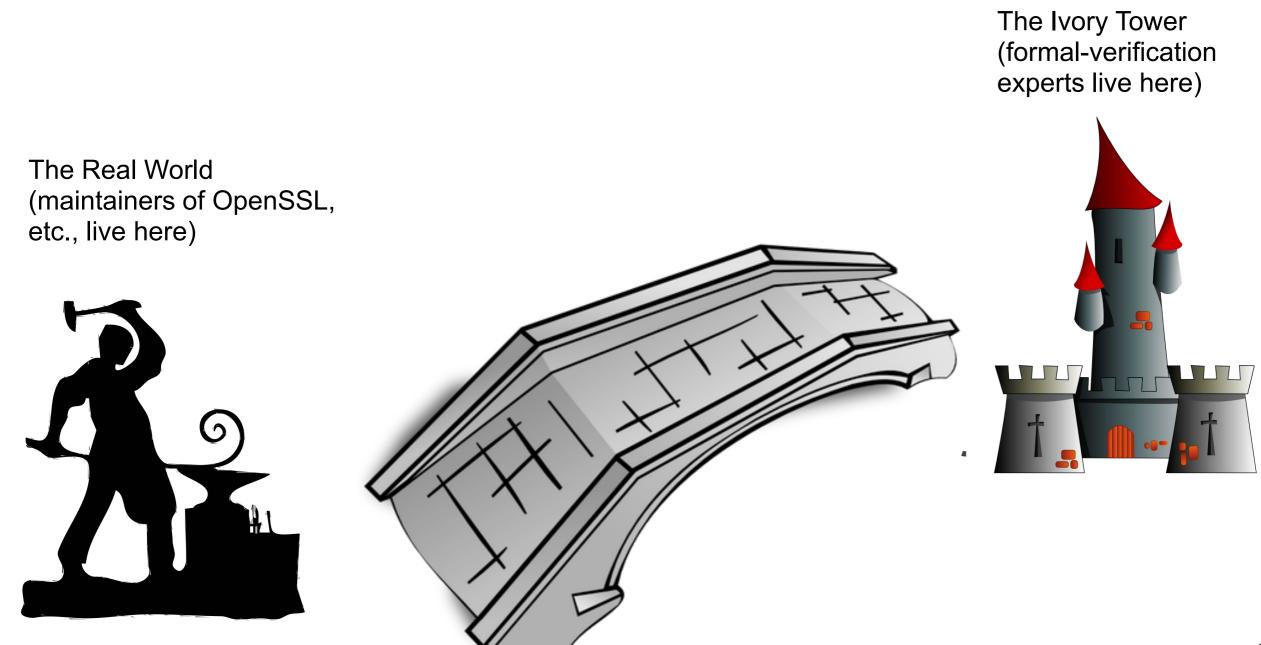
Labor-intensive adaptation, with each combination taking significant expert effort.

We introduced Fiat Cryptography.

.An automatic generator for this kind of code,

with correctness proofs in the Coq theorem prover.

 Adopted for small but important parts of TLS implementations in both Chrome and Firefox, plus a number of blockchain systems, etc.



Outline

- •Catching up: formal verification in the 21st century
- More specific project motivation
- •Classic Fiat Cryptography
- Towards correct-by-construction cryptographic appliances

Catching up: formal verification in the 21st century

Debugging: The Secret Essence of Programming

"By June 1949 people had begun to realize that it was not so easy to get programs right as at one time appeared.

[...] the realization came over me with full force that a good part of the remainder of my life was going to be spent in finding errors in my own programs."

Maurice Wilkes, *Memoirs of a Computer Pioneer*, MIT Press, 1985, p. 145.

"EDSAC (9)". Licensed under CC BY 2.0 via Commons https://commons.wikimedia.org/wiki/File:EDSAC_(9).jpg#/media/File:EDSA@_(9).jp

Crucial Substitutions

Debugging exploring concrete executions

Proving

exploring symbolic arguments

Testing describing concrete scenarios

describing general requirements

Auditing code algorithms in detail

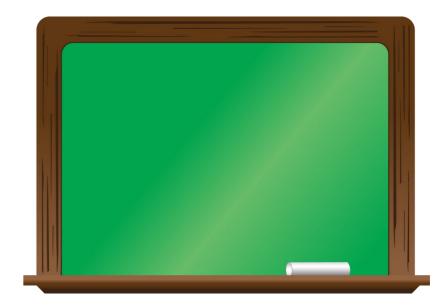
Auditing specs functionality without optimizations

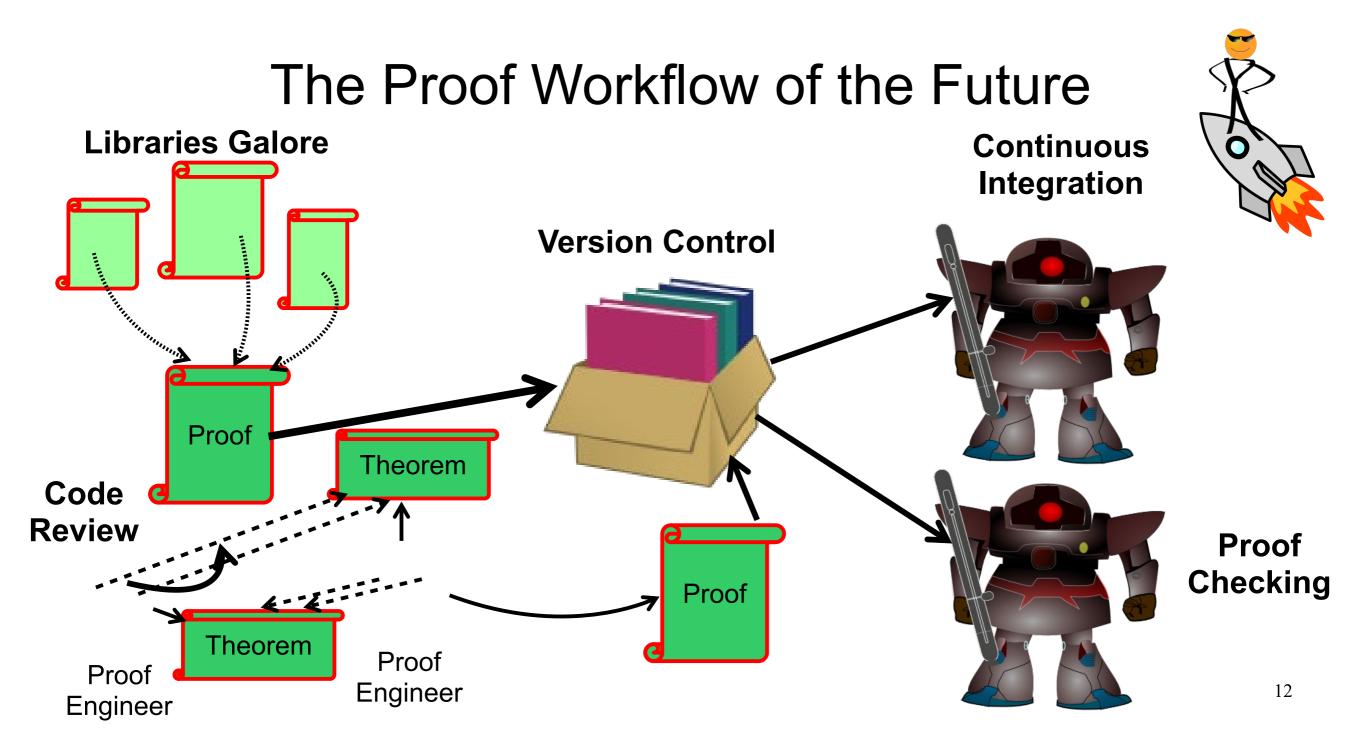
10

Q: Aren't These Proofs Too Boring for Mortals?

It is argued that formal verifications of programs, no matter how obtained, will not play the same key role in the development of computer science and software engineering as proofs do in mathematics. Furthermore the absence of continuity, the inevitability of change, and the complexity of specification of significantly many real programs make the formal verification process difficult to justify and manage.

> – De Millo, Lipton, and Perlis,
> "Social Processes and Proofs of Theorems and Programs," CACM, 1979

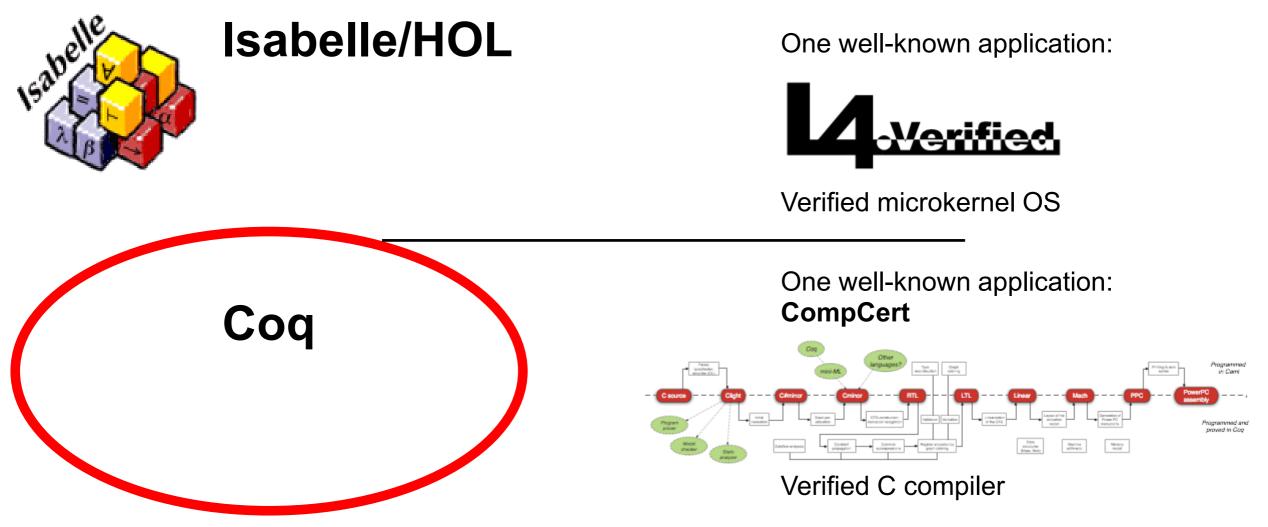


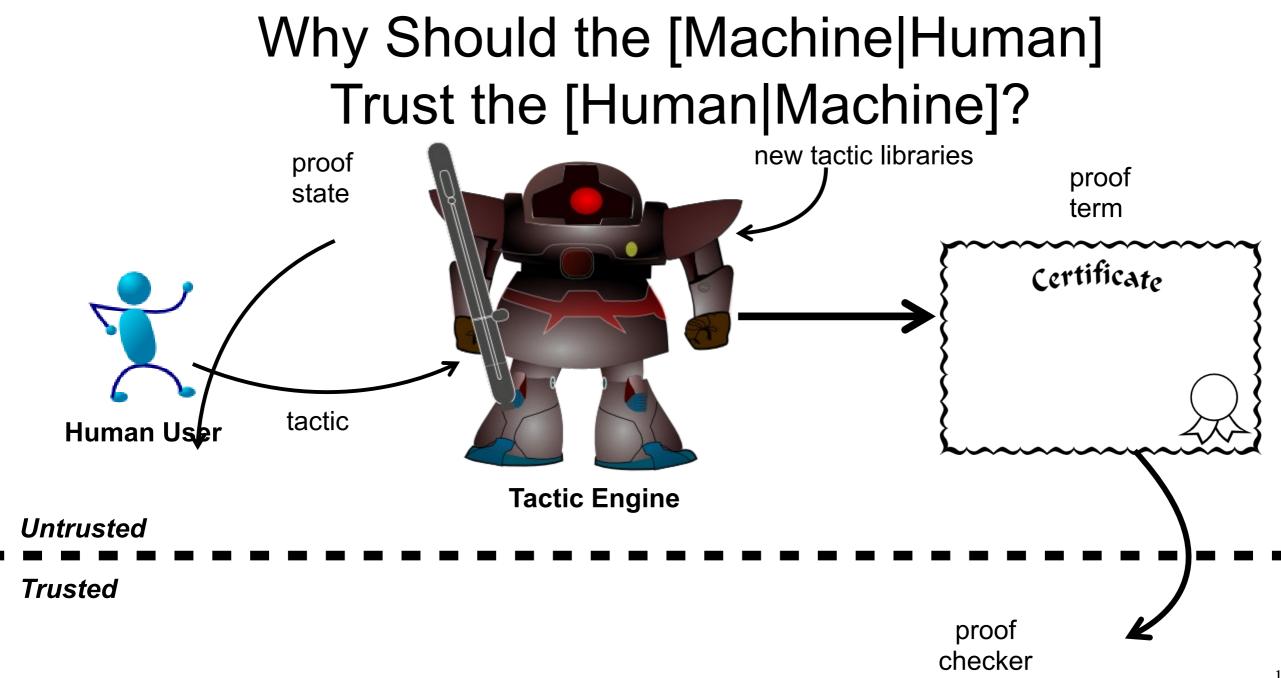


Proof Assistant

noun: a software package essentially providing an integrated development environment (IDE) for stating and proving mathematical theorems where writing proofs takes human effort but checking proofs is automatic

The Most Popular Proof Assistants

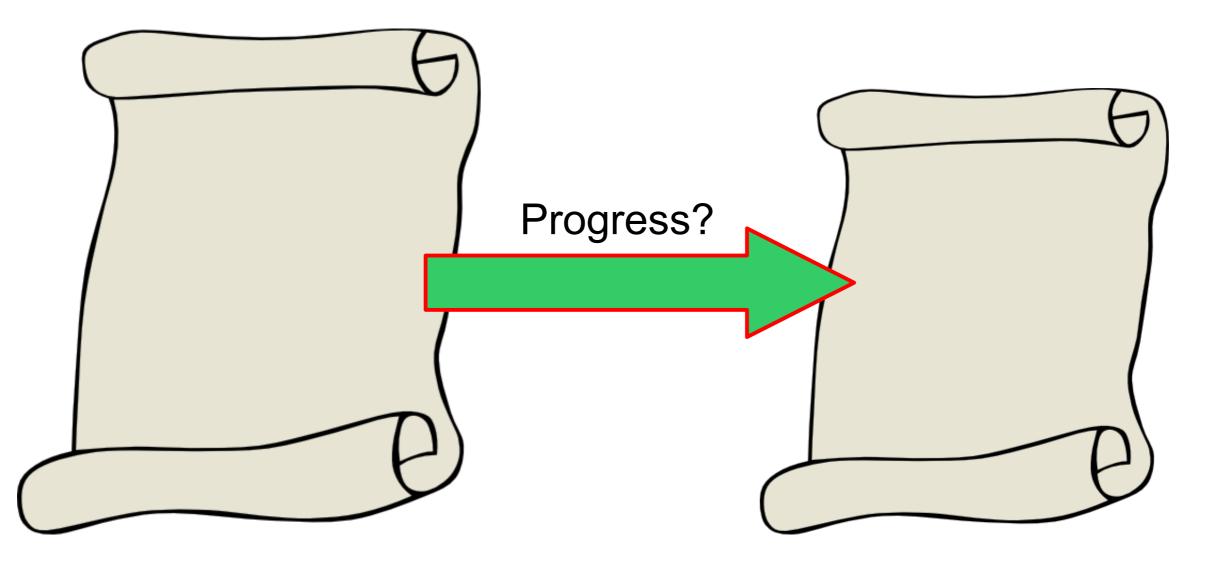


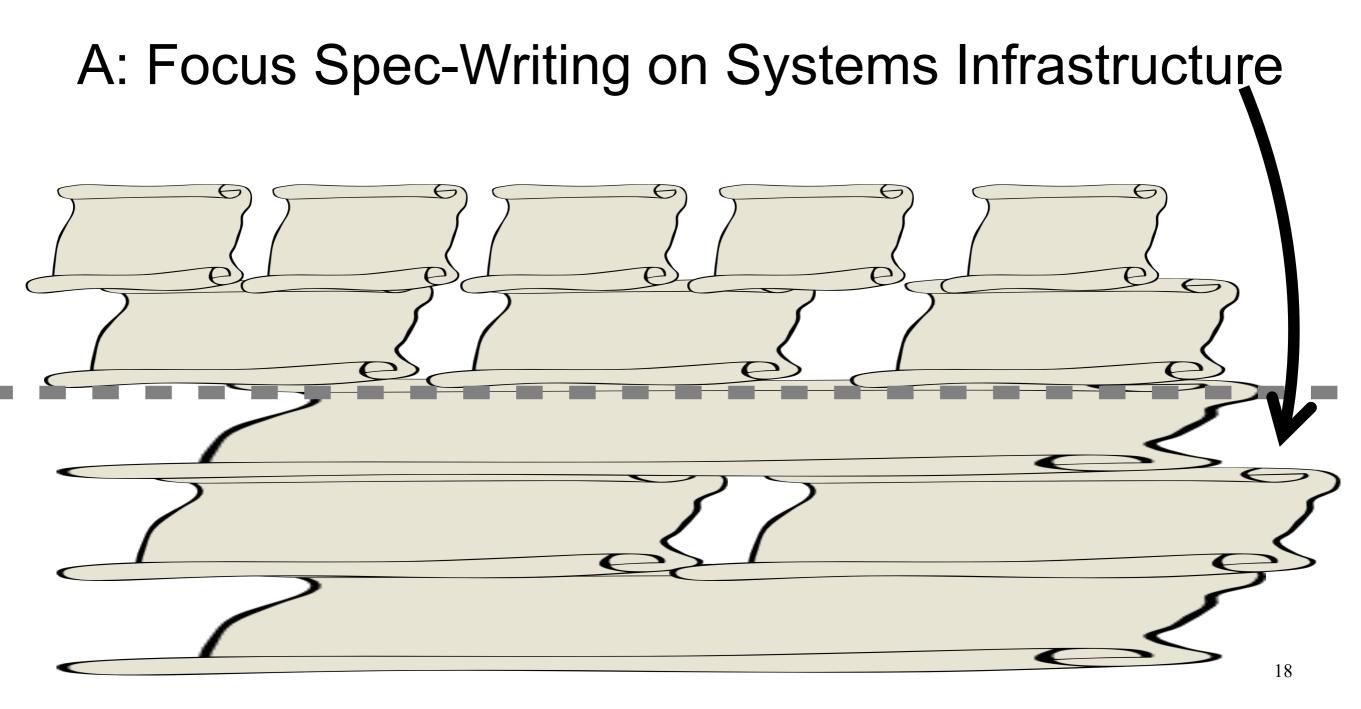


Demo

Some simple proofs in Coq

Q: Isn't It (About) As Hard to Get Specs Right?





An Approximate Truth About Software Spec Optimizations Implementation

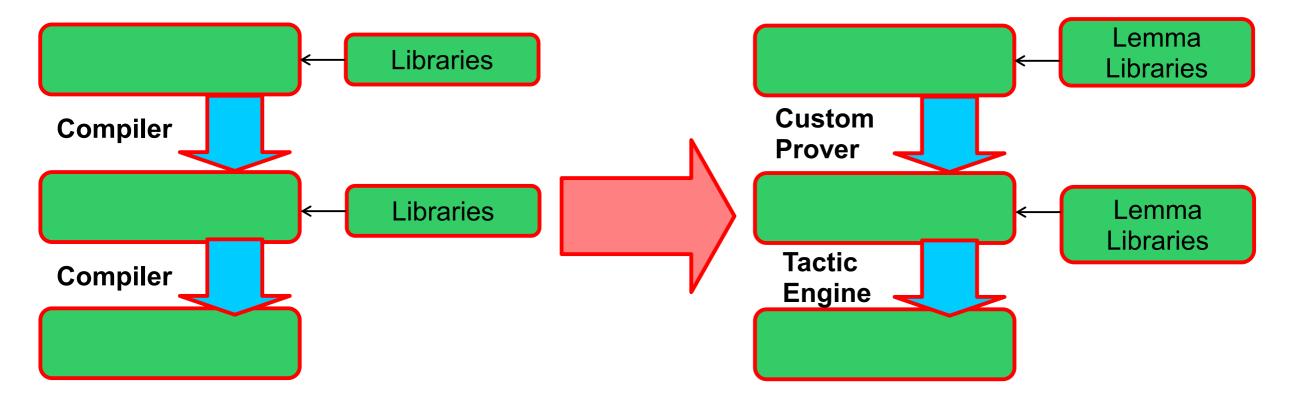
Q: Aren't Those Specs Still Hard to Get Right? Ann Shoo Application **Source Language Semantics** Self-Contained Compiler No longer trusted! Verified Unit **Machine Language Semantics Processor** 20

Old vs. New

Old	New
System-integration tests and unit tests, since combined state space grows exponentially as we compose pieces	System-integration theorems imply proper functioning of all components.
Careful code review of all components, since a corner-case bug in any of them can wreck the whole system	Careful code review only of externally facing specs

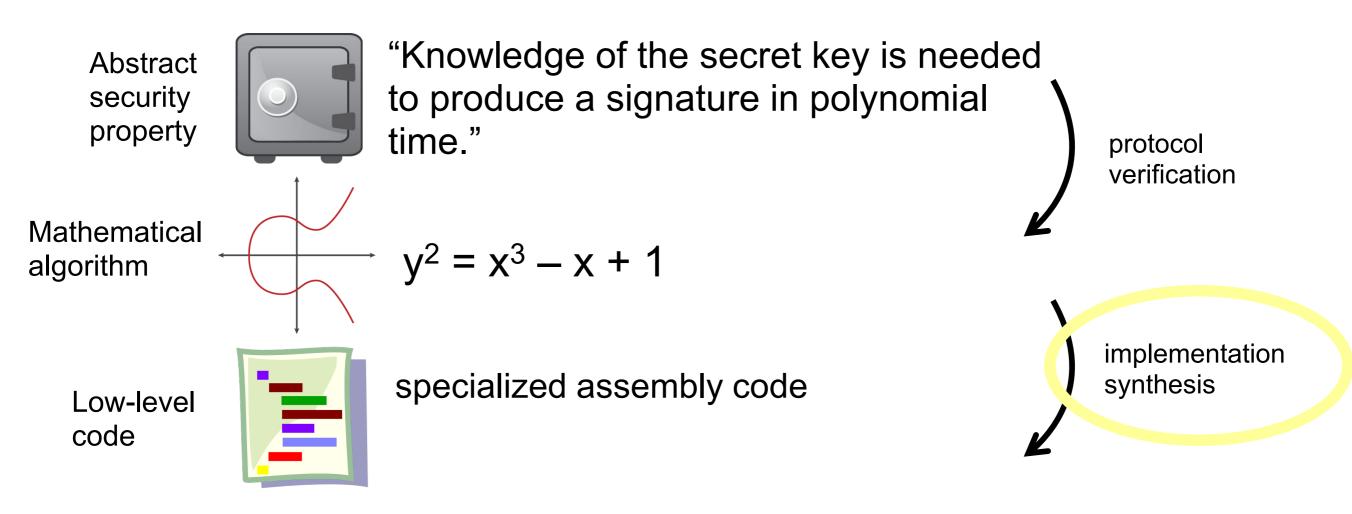
Q: Aren't the Proofs Huge and Unwieldy?

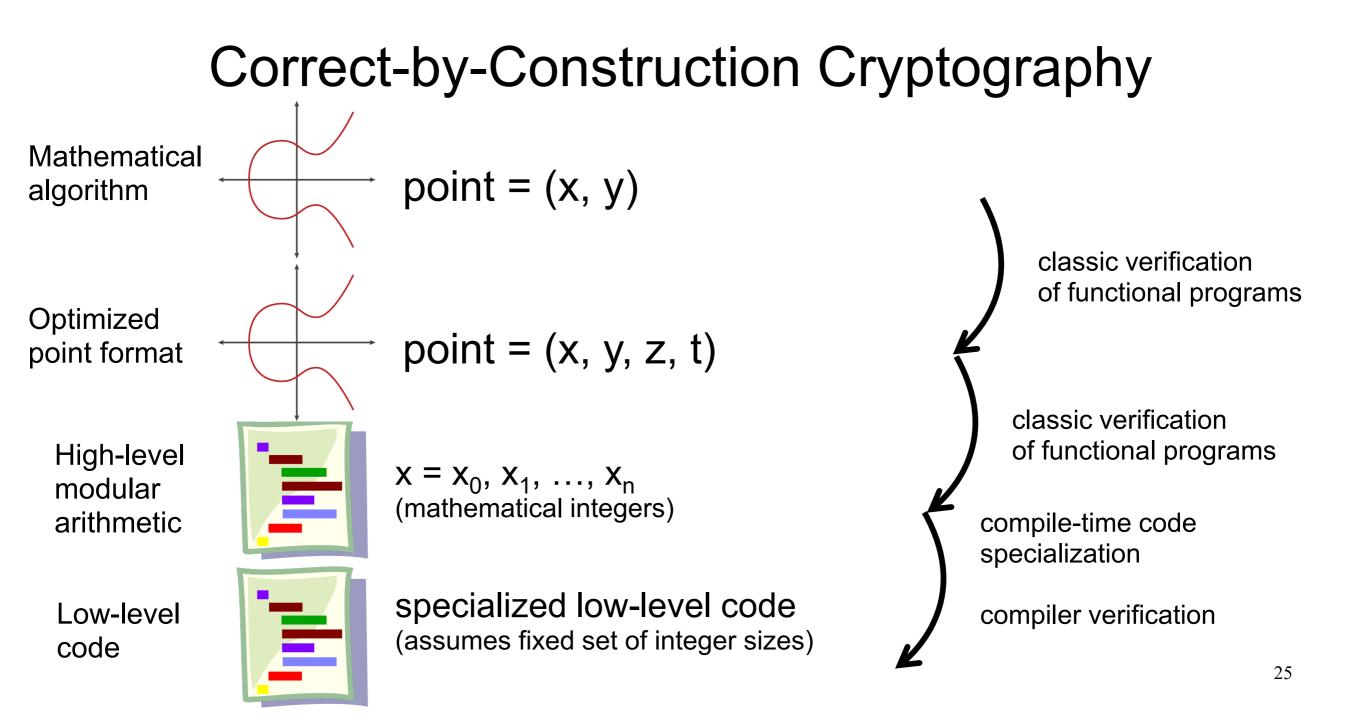
Well, aren't machine-code programs huge, too?



Motivation: correct-by-construction crypto

Correct-by-Construction Cryptography





Generated Code

Squaring a number (64-bit)

 $\lambda '(x7, x8, x6, x4, x2)$ % core, uint64 t x9 = x2 * 0x2;uint64 t x10 = x4 * 0x2;uint64 t x11 = x6 * 0x2 * 0x13;uint64 t x12 = x7 * 0x13; uint64 t x13 = x12 * 0x2;uint128 t x14 = (uint128 t) x2 * x2 + (uint128 t) x13 * x4 + (uint128 t) x11 * x8; uint128 t x15 = (uint128 t) x9 * x4 + (uint128 t) x13 * x6 + (uint128 t) x8 * (x8 * 0x13); uint128 t x16 = (uint128 t) x9 * x6 + (uint128 t) x4 * x4 + (uint128 t) x13 * x8; uint128 t x17 = (uint128 t) x9 * x8 + (uint128 t) x10 * x6 + (uint128 t) x7 * x12; uint128 t x18 = (uint128 t) x9 * x7 + (uint128 t) x10 * x8 + (uint128 t) x6 * x6; uint64 t x19 = (uint64 t) (x14 >> 0x33);uint128 t x21 = x19 + x15; uint64 t x22 = (uint64 t) (x21 >> 0x33); uint64 t x23 = (uint64 t) x21 & 0x7fffffffffff; uint128 t x24 = x22 + x16;uint64 t x25 = (uint64 t) (x24 >> 0x33);uint64 t x26 = (uint64 t) x24 & 0x7ffffffffffff; uint128 t x27 = x25 + x17;uint64 t x28 = (uint64 t) (x27 >> 0x33);uint128 t x30 = x28 + x18;uint64 t x31 = (uint64 t) (x30 >> 0x33);uint64 t x33 = x20 + 0x13 * x31;uint64 t x34 = x33 >> 0x33; uint64 t x35 = x33 & 0x7fffffffffff; uint64 t x36 = x34 + x23;uint64 t x37 = x36 >> 0x33;uint64 t x38 = x36 & 0x7ffffffffff; return (Return x32, Return x29, x37 + x26, Return x38, Return x35))

Squaring a number (32-bit)

λ '(x17, x18, x16, x14, x12, x10, x8, x6, x4, x2)%core, uint64 t x19 = (uint64 t) x2 * x2; uint64 t x19 = (uint64 t) (0x2 * x2) * x4; uint64 t x21 = 0x2 * ((uint64 t) x4 * x4 + (uint64 t) x2 * x6); $uint64 \pm x22 = 0x2 \pm ((uint64 \pm) x4 \pm x6 \pm (uint64 \pm) x2 \pm x8);$ uinted_t x22 + 0x2 + (Uinted_t) x4 * x6 + (Uinted_t) x2 * x6); uinted_t x23 + (Uinted_t) x6 * x6 + (uinted_t) (uinted_t) (0x2 + x8 + (Uinted_t) (0x2 + x2) * x10; uinted_t x24 + 0x2 + (Uinted_t) x6 * x8 + (Uinted_t) x4 * x10 + (Uinted_t) x2 * x14 + (Uinted_t) (0x2 * x4) * x12); uinted_t x25 - 0x2 + ((Uinted_t) x8 * x8 + (Uinted_t) x6 * x12 + (Uinted_t) x2 * x14 + (Uinted_t) (0x2 * x4) * x12); uinted_t x25 - 0x2 + ((Uinted_t) x8 * x10 + (Uinted_t) x6 * x12 + (Uinted_t) x4 * x14 + (Uinted_t) x2 * x16); uinted_t x27 - (Uinted_t) x10 * x10 + 0x2 + ((Uinted_t) x6 * x12 + (Uinted_t) x4 * x18 + 0x2 - ((Uinted_t) x6 * x12)); uint64 t x27 = (uint64 t) x10 + x10 + 0x2 * ((uint64 t) x6 * x14 + (uint64 t) x2 * x18 + 0x2 * ((uint64 t) x4 * x16 + (uint64 t) x8 * x12)); uint64 t x29 = 0x2 * ((uint64 t) x10 * x12 + (uint64 t) x8 * x14 + (uint64 t) x6 * x16 + (uint64 t) x4 * x18 + (uint64 t) x2 * x17); uint64 t x29 = 0x2 * ((uint64 t) x12 * x12 + (uint64 t) x10 * x14 + (uint64 t) x6 * x18 + 0x2 * ((uint64 t) x8 * x16 + (uint64 t) x4 * x17)); uint64 t x30 = 0x2 * ((uint64 t) x12 * x12 + (uint64 t) x10 * x14 + (uint64 t) x8 * x18 + 0x2 * ((uint64 t) x6 * x17)); uint64 t x31 = (uint64 t) x14 * x14 + 0x2 * ((uint64 t) x10 * x18 + 0x2 * ((uint64 t) x6 * x17)); uint64 t x32 = 0x2 * ((uint64 t) x14 * x16 + (uint64 t) x12 * x18 + (uint64 t) x10 * x17); uint64_t x33 = 0x2 * ((uint64_t) x16 * x16 + (uint64_t) x14 * x18 + (uint64_t) (0x2 * x12) * x17); uint64_t x40 = x39 + x37; uint64_t x41 = x26 + x36 << 0x4 wint64 + x42 = x41 + x36 << 0x1uint64_t x43 = x42 + x36; uint64 t x44 = x25 + x35 << 0x4 uint64 t x45 = x44 + x35 << 0x1 uint64 t x46 = x45 + x35; uint64 t x47 = x24 + x34 << 0x4uint64_t x48 = x47 + x34 << 0x1; uint64_t x49 = x48 + x34; uint64_t x50 = x23 + x33 << 0x4; uint64_t x51 = x50 + x33 << 0x1; uint64 t x52 = x51 + x33; uint64_t x53 = x22 + x32 << 0x4; uint64_t x54 = x53 + x32 << 0x1; uint64_t x55 = x54 + x32; uint64_t x56 = x21 + x31 << 0x4; uint64 t x57 = x56 + x31 << 0x1 uint64_t x58 = x57 + x31; uint64 t x59 = x20 + x30 << 0x4 uint64_t x60 = x59 + x30 << 0x1 uint64_t x61 = x60 + x30; uint64_t x62 = x19 + x29 << 0x4; uint64_t x63 = x62 + x29 << 0x1; uint64_t x64 = x63 + x29; uint64_t x65 = x64 >> 0x1a; uint32_t x66 = (uint32_t) x64 & 0x3ffffff; uint64 t x67 = x65 + x61;uint64_t x68 = x67 >> 0x19; uint32 t x69 = (uint32 t) x67 & 0x1ffffff uint64_t x70 = x68 + x58; uint64_t x71 = x70 >> 0x1a; uint32 t x72 = (uint32 t) x70 & 0x3ffffffuint64_t x73 = x71 + x55; uint64_t x74 = x73 >> 0x19; uint32 t x75 = (uint32 t) x73 & 0x1ffffff uint64_t x76 = x74 + x52; uint64_t x77 = x76 >> 0x1a; uint32_t x78 = (uint32_t) x76 & 0x3ffffff; uint64 t x79 = x77 + x49; uint64_t x80 = x79 >> 0x19; uint32_t x81 = (uint32_t) x79 & 0x1ffffff; uint64 t x82 = x80 + x46;uint32_t x83 = (uint32_t) (x82 >> 0x1a); uint32 t x84 = (uint32 t) x82 & 0x3ffffff uint64_t x85 = x83 + x43; uint32_t x86 = (uint32_t) (x85 >> 0x19); uint32 t x87 = (uint32 t) x85 & 0x1ffffff uint64_t x88 = x86 + x40; uint32_t x89 = (uint32_t) (x88 >> 0x1a); uint32 t x90 = (uint32 t) x88 & 0x3ffffff uint64 t x91 = x89 + x28; uint32 t x92 = (uint32 t) (x91 >> 0x19) uint32_t x93 = (uint32_t) x91 & 0x1ffffff; uint64_t x94 = x66 + (uint64 t) 0x13 * x92; uint32_t x95 = (uint32_t) (x94 >> 0x1a); uint32_t x96 = (uint32_t) x94 & 0x3ffffff; uint32 t x97 = x95 + x69;uint32_t x98 = x97 >> 0x19; uint32 t x99 = x97 & 0x1ffffff;

uintiz_(1 x99 - x9) % oxiiiiiii; return (Return x93, Return x90, Return x87, Return x84, Return x81, Return x78, Return x75, x98 + x72, Return x99, Return x96))

Surprising (?) Fact About Modular Arithmetic

Different prime moduli have dramatically different efficiency with best code on commodity processors.

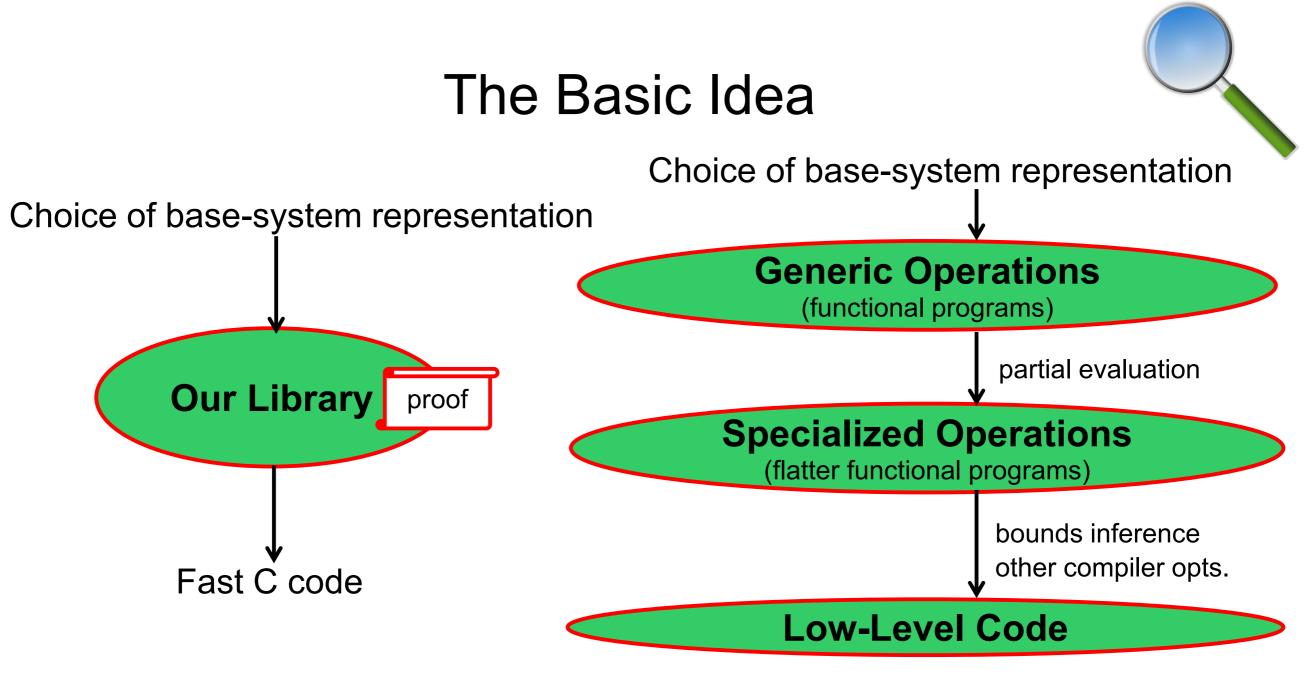
 $2^{255} - 19$ is a popular choice for relatively easy implementation. General pattern: $2^{k} - c$, for $c << 2^{k}$. (Called *pseudo-Mersenne*.) Example of a fast operation: *modular reduction*

Representing Numbers mod
$$2^{255}$$
 - 19
result of multiplying two numbers in the prime field, so 510 bits wide
= $t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7$
= $(t_0 + 2^{64} t_1 + ...) + 2^{256} (t_4 + 2^{64} t_5 + ...)$
darn, that's 2^{256} , not 2^{65} , so we can't use that reduction trick!
However.... 51 × 10 = 510.
 $t = (t_0 + 2^{51} t_1 + ...) + 2^{255} (t_5 + 2^{51} t_6 + ...)$
champion rep. on 64-bit processors
(note: not using full bitwidth!)
 $t = s_0 + 2^{25} s_1 + 2^{2 \times 25.5} s_2 + 2^{3 \times 25.5} s_3 + ...$
t = $s_0 + 2^{26} s_1 + 2^{51} s_2 + 2^{77} s_3 + ...$
champion rep. on 32-bit processors
(note: nonuniform bitwidths!)

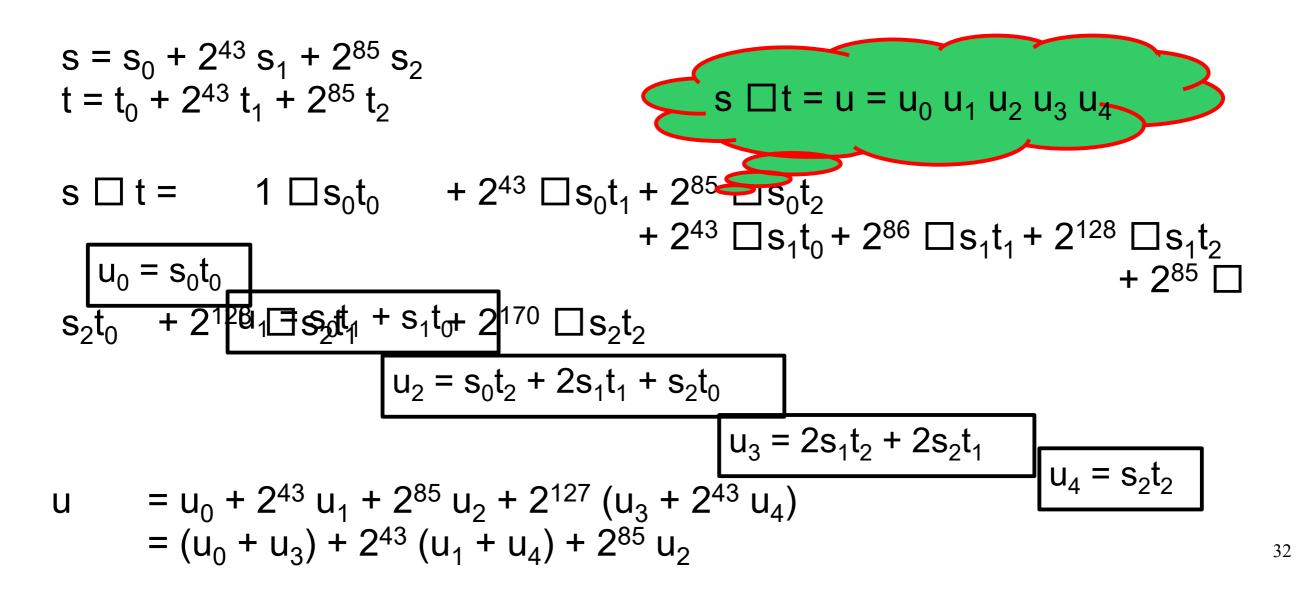
Demo

Invoking Fiat Cryptography

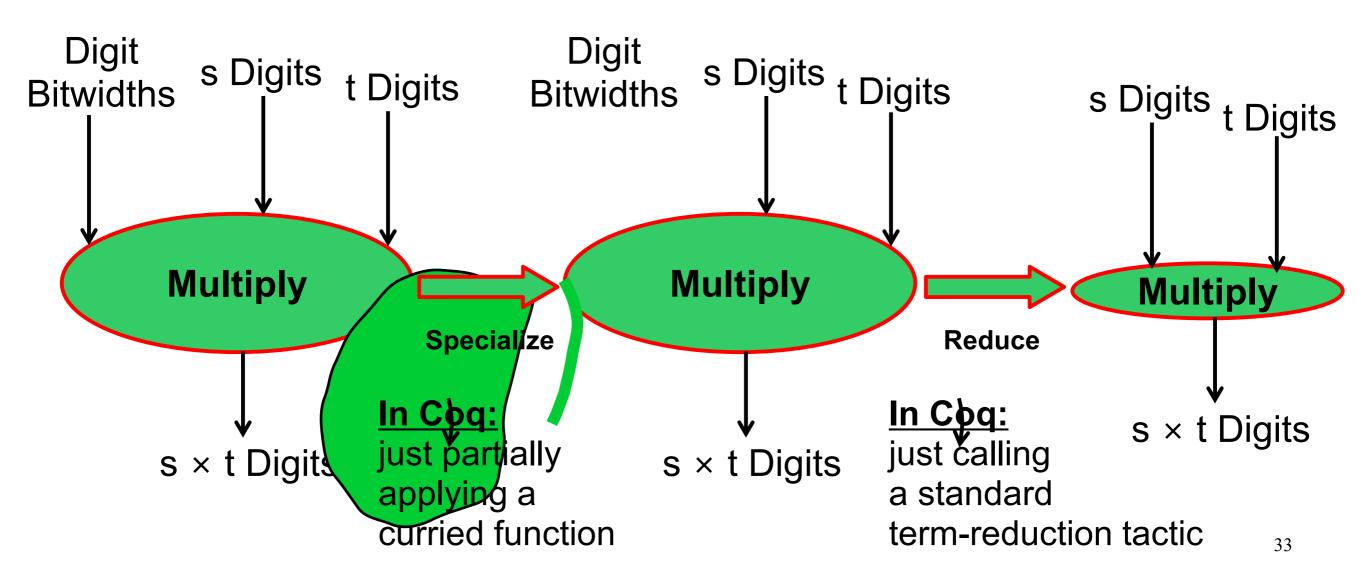
The Fiat Cryptography approach



Example: Multiplication (for modulus 2¹²⁷ - 1)



Time for Some Partial Evaluation



An Example

Definition w (i:nat) : $Z := 2^Q \text{ceiling}((25+1/2) * i)$.

Example base_25_5_mul (f g:tuple Z 10) :
 { fg : tuple Z 10 |
 (eval w fg) mod (2^255-19)
 = (eval w f * eval w g) mod (2^255-19) }.

(f0*g9+f1*g8+f2*g7+f3*g6+f4*g5+f5*g4+f6*g3+f7*g2+f8*g1+f9*g0, f0*g8+2*f1*g7+f2*g6+2*f3*g5+f4*g4+2*f5*g3+f6*g2+2*f7*g1+f8*g0+38*f9*g9, f0*g7+f1*g6+f2*g5+f3*g4+f4*g3+f5*g2+f6*g1+f7*g0+19*f8*g9+19*f9*g8, f0*g6+2*f1*g5+f2*g4+2*f3*g3+f4*g2+2*f5*g1+f6*g0+38*f7*g9+19*f8*g8+38*f9*g7, f0*g5+f1*g4+f2*g3+f3*g2+f4*g1+f5*g0+19*f6*g9+19*f7*g8+19*f8*g7+19*f9*g6, f0*g4+2*f1*g3+f2*g2+2*f3*g1+f4*g0+38*f5*g9+19*f6*g8+38*f7*g7+19*f8*g6+38*f9*g5, f0*g3+f1*g2+f2*g1+f3*g0+19*f4*g9+19*f5*g8+19*f6*g7+19*f7*g6+19*f8*g5+19*f9*g4, f0*g2+2*f1*g1+f2*g0+38*f3*g9+19*f4*g8+38*f5*g7+19*f6*g6+38*f7*g5+19*f8*g4+38*f9*g3, f0*g1+f1*g0+19*f2*g9+19*f3*g8+19*f4*g7+19*f5*g6+19*f6*g5+19*f7*g4+19*f8*g3+19*f9*g2, 34 f0*q0+38*f1*g9+19*f2*g8+38*f3*g7+19*f4*g6+38*f5*g5+19*f6*g4+38*f7*g3+19*f8*g2+38*f9*g1)

Compiling to Low-Level Code $1 \times (1 \times 2^{52} + (1 \times x + 0)) + (1 \times (1 \times (-y) + 0) + 0)$ reify to syntax tree constant-fold $(2^{52} + x) - y$ flatten Assume: $0 \le x, y \le 2^{51} + 2^{48}$ let $c = 2^{52} + x$ in Deduce: $2^{52} \le c \le 2^{52} + 2^{51} + 2^{48}$ let d = c - y in Deduce: $2^{51} - 2^{48} \le d \le 2^{52} + 2^{51} + 2^{48}$ d infer bounds uint64 t c = 2^{52} + Χ; uint64 t d = c -y;

35

Implementation and Experiments

~38 kloc in full library (including significant parts that belong in stdlib)

.Very little code needed to instantiate to new prime moduli.

In fact, we wrote a Python script (under 3000 lines) to generate parameters automatically from prime numbers, written suggestively, e.g. $2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

•This script is outside the TCB, since any successful compilation is guaranteed to implement correct arithmetic.

Q: Where do we get a lot of reasonable moduli?

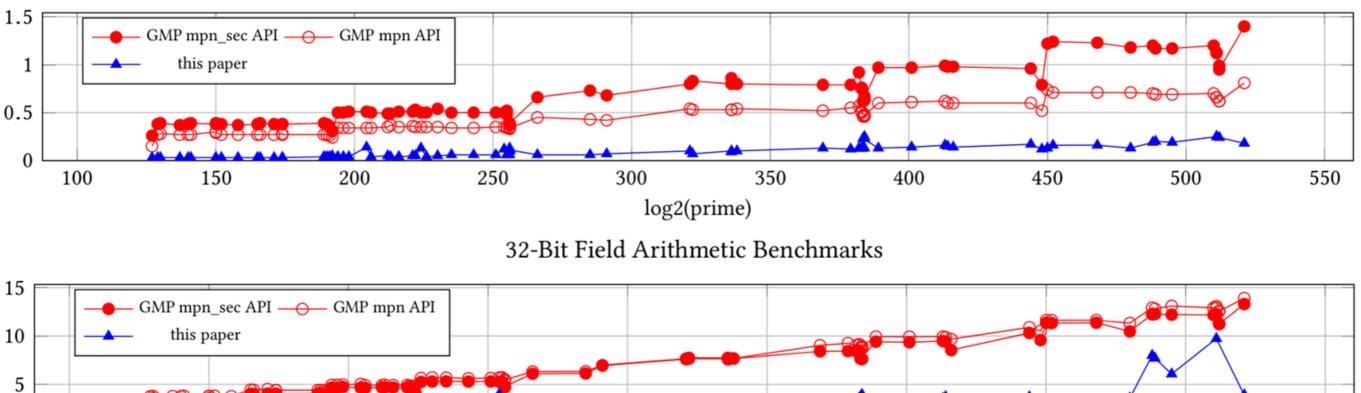
A: Scrape all prime numbers appearing in a popular mailing list.

We used the elliptic curves list at moderncrypto.org. We found about 80 primes.

Only a few turned out to be terrible ideas posted by newbies.

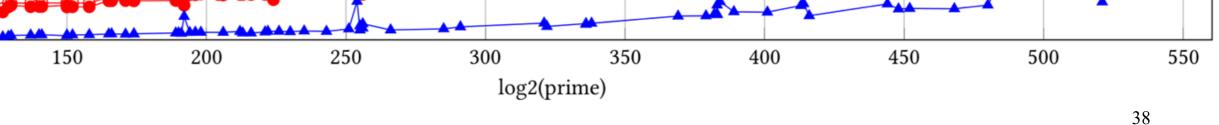
Many-Primes Experiment

64-Bit Field Arithmetic Benchmarks



0

100

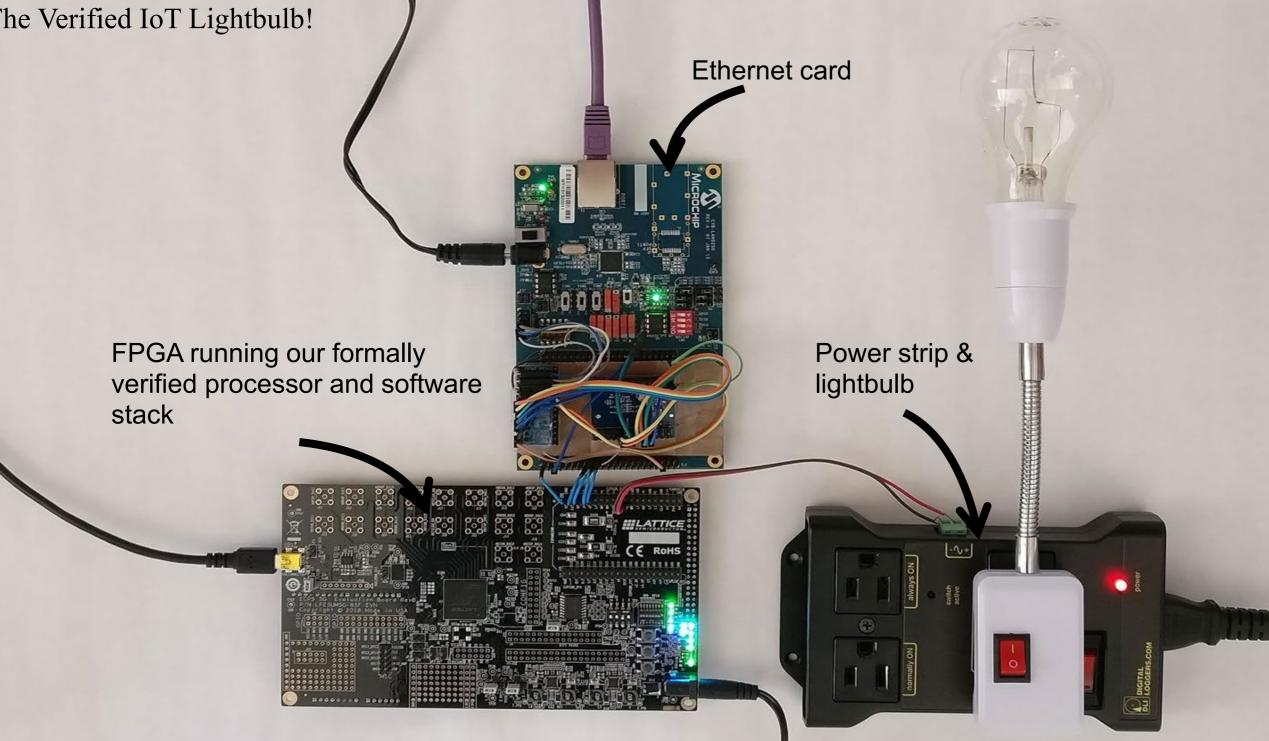


P256 Mixed Addition

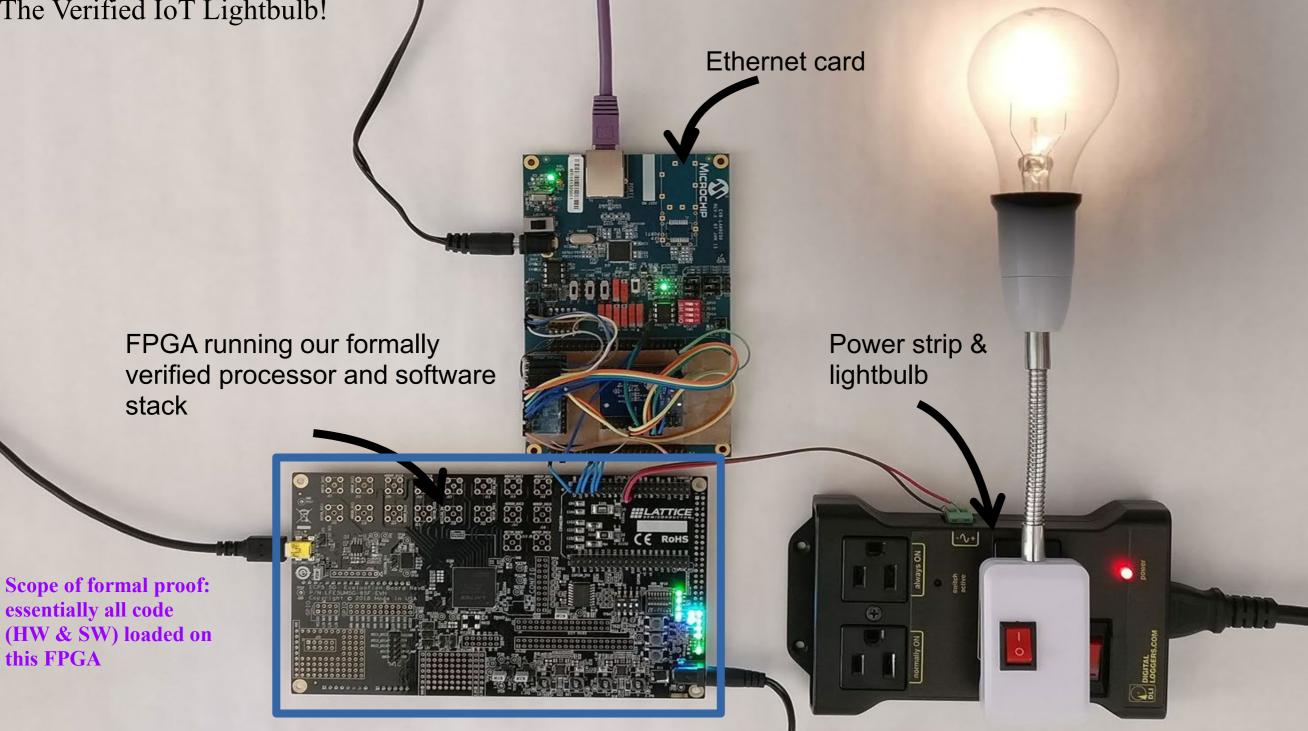
Implementation	CPU cycles	μs at 2.6GHz
0penSSL AMD64+ADX asm	544	.21
0penSSL AMD64 asm	644	.25
this work, icc	1112	.43
this work, gcc	1808	.70
OpenSSL C	1968	.76

Towards correct-by-construction cryptographic appliances

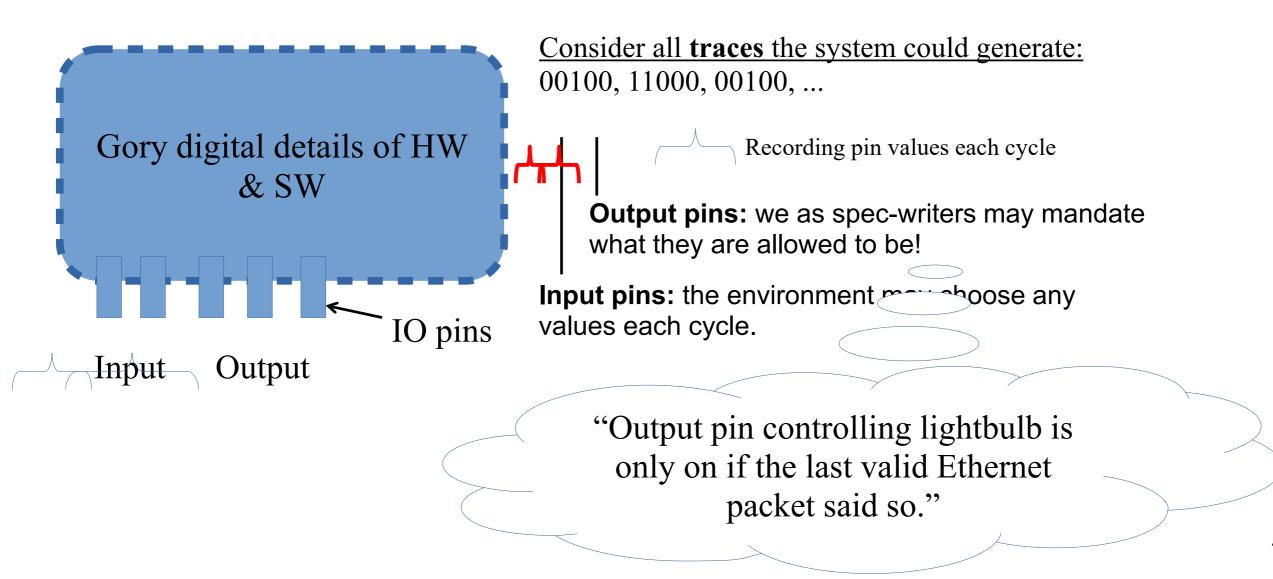
The Verified IoT Lightbulb!



The Verified IoT Lightbulb!



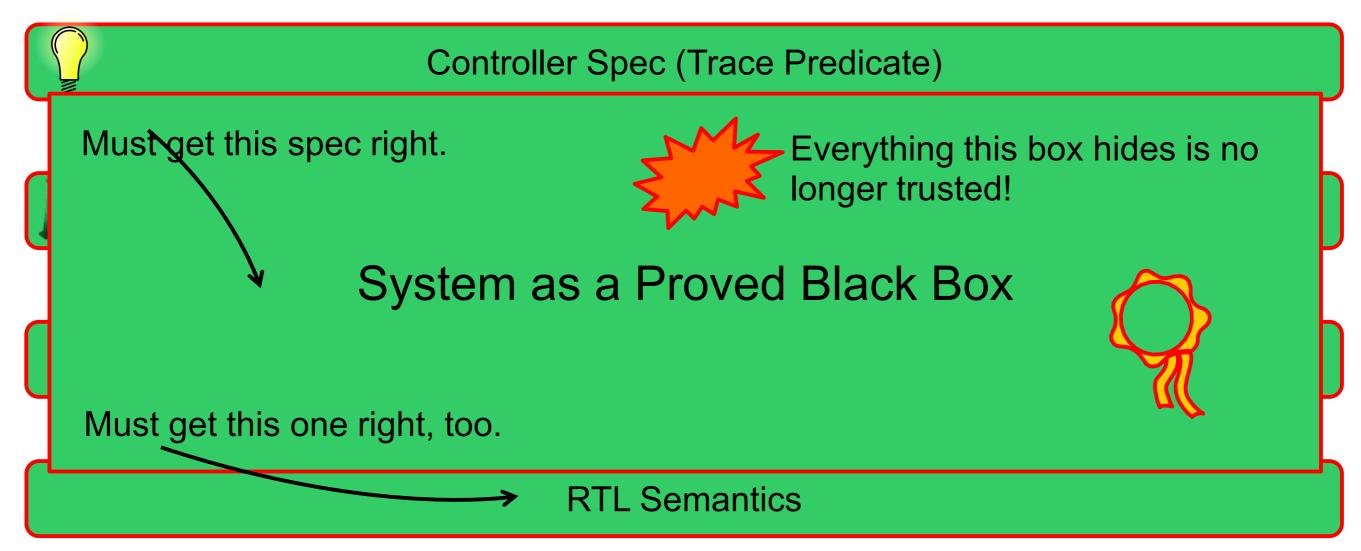
Specification?



Key Layers of End-to-End Proof

	Controller Spec (Trace Predicate)	
	Controller SW	
Bedrock	Programming Language Semantics	
	Verified Compiler	
RISC-V	ISA Family Semantics	
Kami	Verified Hardware	
	RTL Semantics	

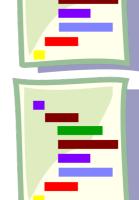
Disappearing Specs



Expanding Scope

Abstract security property Mathematical algorithm High-level modular arithmetic

Low-level code



"Knowledge of the secret key is needed to produce a signature in polynomial time."

$$y^2 = x^3 - x + 1$$

$$x = x_0, x_1, ..., x_n$$

specialized assembly code

Protocol verification, perhaps following past work by Appel & others, using our new higher-level notation for protocol programming

Synthesizing C code for more of a crypto library (beyond straightline code) with Rupicola, a proof-generating compiler

Genetic search for fast assembly code (collaboration with Prof. Yuval Yarom et al.), plus formally verified program-equivalence checker

46

Connect to verified HW & systems software

https://github.com/mit-plv/fiathttps://github.com/mit-plv/bedrock2